Duality between subgradient and conditional gradient methods

نویسنده

  • Francis R. Bach
چکیده

Given a convex optimization problem and its dual, there are many possible firstorder algorithms. In this paper, we show the equivalence between mirror descent algorithms and algorithms generalizing the conditional gradient method. This is done through convex duality and implies notably that for certain problems, such as for supervised machine learning problems with nonsmooth losses or problems regularized by nonsmooth regularizers, the primal subgradient method and the dual conditional gradient method are formally equivalent. The dual interpretation leads to a form of line search for mirror descent, as well as guarantees of convergence for primal-dual certificates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New results on subgradient methods for strongly convex optimization problems with a unified analysis

We develop subgradientand gradient-based methods for minimizing strongly convex functions under a notion which generalizes the standard Euclidean strong convexity. We propose a unifying framework for subgradient methods which yields two kinds of methods, namely, the Proximal Gradient Method (PGM) and the Conditional Gradient Method (CGM), unifying several existing methods. The unifying framewor...

متن کامل

An Accelerated Gradient Method for Distributed Multi-Agent Planning with Factored MDPs

We study optimization for collaborative multi-agent planning in factored Markov decision processes (MDPs) with shared resource constraints. Following past research, we derive a distributed planning algorithm for this setting based on Lagrangian relaxation: we optimize a convex dual function which maps a vector of resource prices to a bound on the achievable utility. Since the dual function is n...

متن کامل

A Fuzzy Gradient Method in Lagrangian Relaxation for Integer Programming Problems

A major issue in Lagrangian relaxation for integer programming problems is to maximize the dual function which is piece-wise linear, and consists of many facets. Available methods include the subgradient method, the bundle method, and the recently developed surrogate subgradient method. Each of the above methods, however, has its own limitations. Based on the insights obtained from these method...

متن کامل

A new Levenberg-Marquardt approach based on Conjugate gradient structure for solving absolute value equations

In this paper, we present a new approach for solving absolute value equation (AVE) whichuse Levenberg-Marquardt method with conjugate subgradient structure. In conjugate subgradientmethods the new direction obtain by combining steepest descent direction and the previous di-rection which may not lead to good numerical results. Therefore, we replace the steepest descentdir...

متن کامل

Primal-dual subgradient methods for convex problems

In this paper we present a new approach for constructing subgradient schemes for different types of nonsmooth problems with convex structure. Our methods are primaldual since they are always able to generate a feasible approximation to the optimum of an appropriately formulated dual problem. Besides other advantages, this useful feature provides the methods with a reliable stopping criterion. T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM Journal on Optimization

دوره 25  شماره 

صفحات  -

تاریخ انتشار 2015